On Conducting Systematic Security and Privacy Analyses of
TOTP 2FA Apps

Conor Gilsenan
U.C. Berkeley

Abstract

Two-factor authentication (2FA) has consistently proven to
dramatically increase the security of online accounts, but the
privacy implications of enabling different methods of 2FA
are not well studied. The Time-based One-Time Passwords
(TOTP) algorithm is one method of 2FA that is widely de-
ployed throughout industry. RFC6238 defines how the client
and server utilize a shared secret to generate and validate a
deterministic one-time password (OTP) during authentica-
tion. However, there is no standard for how to back up the
shared secret on the client, resulting in custom implemen-
tations across dozens of consumer TOTP apps that directly
impact the security and privacy of the TOTP 2FA scheme. In
this paper, we define an assessment methodology for conduct-
ing systematic security and privacy analyses of the backup
and recovery functionality of TOTP apps. Using this work-
flow, we analyzed the Authy Android app and observed that it
sends the plaintext usernames of third party accounts to Authy
servers, uses an inadequate work factor when deriving keys
with PBKDF2, and encrypts Base32 encoded TOTP secrets,
which makes them vulnerable to offline attacks.

1 Introduction

The Time-based One-Time Passwords (TOTP) algorithm is
one method of two-factor authentication (2FA) that is widely
deployed throughout industry, including at some of the largest
sites on the internet, such as facebook.com, google.com, and
amazon.com. RFC6238 [8] defines the technical algorithm
which allows the client and server to utilize a shared secret

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.

Who Are You?! Adventures in Authentication (WAY) 2020.

August 7, 2020, Virtual Conference.

Noura Alomar
U.C. Berkeley

Serge Egelman
U.C. Berkeley / ICSI

to generate and validate a deterministic one-time password
(OTP) during authentication. However, it avoids specifying
many of the practical steps required to implement TOTP 2FA
as a security mechanism in the real world, such as transferring
the shared secret from server to client.

A separate publication by Google [4] has become the de
facto standard for transferring data from the server to the
client during TOTP registration and defines several key terms,
including: (1) the issuer, which is the name of the website
on which the user is currently enabling TOTP 2FA; (2) the
name, which is the username of the user’s account on the
website; and (3) the TOTP secret, which is the shared secret
defined by RFC6238 [8]. The client requires these three fields
to generate OTPs and differentiate between accounts in the
user interface.

Many TOTP apps provide custom backup and recovery
mechanisms to ensure that users do not lose access to this data
when they lose their devices, buy new devices, or uninstall the
app. These features are critical usability enhancements, but
can also introduce security and privacy issues depending on
how they are implemented. Studies evaluating the security and
privacy of TOTP apps, and their back-up mechanisms specifi-
cally, are sparse within the literature. However, researchers
have conducted such studies on password managers, which
share the same security goal: securely backup a local secret.

Bhargavan and Delignat-Lavaud [10] analyzed several ap-
plications that leveraged client-side cryptography to protect
data stored remotely and concluded that vulnerabilities in
the client applications themselves can expose sensitive data.
Li et. al [13] defined high level security goals and attack
vectors to analyze five prevalent web-based password man-
agers, but the paper lacks technical details required to repli-
cate their work. Belenko and Sklyarov [9] recovered master
passwords in 16 password management apps via brute force
attacks. Overwhelmingly, researchers have concluded that
most users are not able to choose passwords that resist offline
attacks [11,12,15].

In this paper, we define a tool-agnostic assessment method-
ology for conducting systematic security and privacy analyses



of the backup and recovery functionality of TOTP apps. We
present a case study in which we employ our methodology to
analyze the popular Authy Android app and propose solutions
for three identified security and privacy issues. Our goal is
for other researchers to utilize this assessment methodology
to both replicate our findings and to analyze other prevalent
TOTP apps.

2 Assessment Methodology

This section defines the assessment methodology and explains
how it can be used to answer the following key questions:

1. What personal information, if any, is leaked to the com-
pany that develops the TOTP app?

2. What is the risk of an external attacker accessing the
TOTP backups?

3. What is the risk of an attacker compromising the plain-
text TOTP secrets from the TOTP backups?

We assume that the attacker does not have physical access
to the user’s device and that all communication between the
TOTP app and remote servers is via HTTPS. Discussions of
encryption throughout this paper refer to the TOTP app locally
encrypting fields within the TOTP backup before sending it
remotely.

Phase 1: Analyze Documentation. In addition to prior aca-
demic work, the researcher should gather and preserve copies
of the TOTP app’s privacy policy, company white papers, blog
posts, conference talks, and previous analyses conducted in
industry. This information can help to quickly establish an
understanding of the architecture and cryptographic design
of the backup and recovery functionality of the app, and any
public disclosures of personal information collected by the
app. However, the question remains whether said informa-
tion accurately reflects how the TOTP app actually functions.
Therefore, the next phase of the workflow shifts focus to re-
verse engineering the TOTP app itself.

Phase 2: Capture Network Traffic. To begin verifying the
accuracy of the gathered documentation, the researcher should
to review the data that the app sends to remote servers. The
goals of this phase include:

1. Identify any plaintext or encrypted personal information
in TOTP backups sent remotely; and

2. Obtain the ciphertext of backed up TOTP secrets.

The researcher should capture all network traffic while
executing the following actions.

First, register a TOTP secret before enabling the TOTP
app’s backup functionality. It is likely a clear privacy issue if

any TOTP secrets or other personal information is disclosed
while backups are disabled.

Second, enable the backup functionality and analyze the
request/response traffic. Specifically, determine whether the
issuer, name, and TOTP secret fields are encrypted before
being sent remotely. Plaintext content in the TOTP backup
can be read by the backup servers, which is a clear security
and/or privacy issue, particularly for those three fields.

Third, register a second TOTP secret and observe whether
it is backed up automatically. Real-time backups are likely
ubiquitous because they provide a desirable user experience,
but they can also pose a privacy risk depending on which
data in the TOTP backup is encrypted. For example, if the
issuer field were included in plaintext, then the backup servers
would learn the specific time that the user enabled 2FA on
their account on the third party service.

Lastly, uninstall and reinstall the app to simulate losing the
TOTP secret. Ideally, the app would be installed on an entirely
separate device in case it utilizes fingerprinting to uniquely
identify devices. Once reinstalled, exercise the entire recovery
workflow to recover the plaintext TOTP secrets.

Phase 3: Analyze App Binary. Several of the fields in the
TOTP backup likely contain encrypted content, which cannot
be easily analyzed without decompiling and analyzing the
app’s binary. The goals of this phase include:

1. Identify the cryptographic algorithms and configurations
used to generate TOTP backups; and

2. Determine how the app verifies that the user has entered
the correct password during recovery.

If the app derives encryption keys from user provided pass-
word(s), then it is critical to document the key derivation
function (e.g. PBKDF2) and its configuration, such as the
work factor (e.g. rounds). Additionally, document the encryp-
tion cipher and mode used to encrypt the TOTP secret and
other data in the TOTP backup. The researcher must prove
that the ciphertext obtained from analyzing the network traffic
was, in fact, generated using the cryptographic processes doc-
umented while analyzing the app’s binary. One approach to
accomplish this is to implement the app’s decryption process
in a separate script and show that decrypting the ciphertext
yields the original plaintext TOTP secret.

Finally, the researcher must determine how the TOTP app
verifies that the user entered the correct password during the
recovery process. The cryptographic design of this functional-
ity is critical to an attacker’s ability to “crack” the ciphertext
in an offline attack, which is discussed in the next section.

Phase 4: Attack Ciphertext Offline. The goal of this
phase is to determine whether an attacker can extract plaintext
TOTP secrets from TOTP backups.



If the TOTP app derives keys from a user provided pass-
word, then it is likely that the ciphertext can be “cracked”
by leveraging techniques used to crack password hashes. An
attacker conducting an offline attack against the ciphertext
would iterate through password guesses and, for each, de-
rive the encryption key and decrypt the ciphertext. The at-
tacker would determine whether each guess is correct by lever-
aging the same verification mechanism that the TOTP app
uses during the recovery process to notify the user whether
they provided the correct backup password. For example, the
app might use an authenticated encryption algorithm, such
as AES-GCM,; it might generate a MAC over the plaintext or
ciphertext, which can be validated; or, it might use some other
custom heuristic. Provided there is a reasonable method of
distinguishing between success and failure for each password
guess, modern open-source password cracking tools, such as
Hashcat [2], can be adapted to crack the ciphertext.

If the TOTP app uses randomly generated keys, then an
offline attack is likely computationally infeasible. In general,
it is a meaningful barrier to force the attacker from a fully
offline attack to an online attack because they must then face
the third party service’s online defenses, such as API rate-
limiting.

Phase 5: Analyze Recovery Workflow. Unlike an internal
attacker who has direct access to TOTP backups, an external
attacker needs to obtain them via remote attack vectors. The
researcher should exercise and document the entire recovery
workflow with the goal of revealing any opportunities for:

1. an external attacker to access TOTP backups; or

2. the user to stop any malicious recovery attempts initiated
by an attacker.

Authentication mechanisms on the backup servers which
attempt to identify who is initiating the recovery request are a
compelling target. The researcher should record all commu-
nications received during recovery, such as SMS messages,
emails, and in-app notifications. It is also often extremely use-
ful to document the recovery process as a workflow diagram
so that it can be visually analyzed for patterns or weak points.

Phase 6: Recommend Improvements. To conclude the
analysis, the researcher should summarize all security and
privacy issues, and clearly outline potential solutions to each.
There may be situations where drastic architectural changes
are unavoidable, but researchers should strive to recommend
realistic and pragmatic solutions because they are more likely
to actually be implemented, which benefits the real world
users of the app.

rounds = 1000

password key = PBKDF2 (password, salt, rounds) backup @
ciphertext = AESCBCyey (totp_secret)
backup['encrypted_seed'] = ciphertext

Alice Authy App Authy Servers

Figure 1: Overview of the Authy backup architecture.

3 Case Study: Authy 2FA

In this section, we present a case-study in which we employed
our assessment methodology to conduct a security and privacy
analysis of version 24.3.1 of the Authy 2FA Android App,
which was published to the Google Play Store on April 1,
2020.

Phase 1: Analyze Documentation. In 2018, Authy pub-
lished a blog post [3] detailing the backup and recovery ar-
chitecture of the Authy 2FA app, which included enough
technical detail to diagram the entire process (see Figure 1).
The post states that the Authy app prompts the user to enter
a password with a minimum length of 6 characters. Then, it
stretches the password using a random salt and 1,000 rounds
of Password-based Key Derivation Function 2 (PBKDF2) [6]
to derive an encryption key. The resulting key is used to
encrypt the TOTP secret using AES-CBC and the resulting
ciphertext is included in the TOTP backup, which is sent to
Authy servers.

Phase 2: Capture Network Traffic. We used a recent ver-
sion of a closed source tool developed by Reardon et. al. [14]
to capture the plaintext network traffic on the Android device
before TLS encryption was applied. In addition to identifying
the TOTP secret ciphertext and associated random salt value,
we observed that the TOTP backup contained the name and
issuer values in plaintext. This means that by simply enabling
the backup functionality, users of the Authy app are unwit-
tingly providing the names of the third party services they
use and their account usernames on those services to Authy
servers. For example, for the fictitious user Alice, Authy could
learn that "Alice’s username for her account on example.com
is alice123."

We cannot determine any technical reason that the TOTP
backups include the name and issuer fields in plaintext. Back-
ups could be bound to the user’s Authy account, which the
user is forced to create upon installation by providing an email
address and phone number. Additionally, there is no in-app
disclosure to warn the user that Authy collects this personal
information. The Authy Privacy Policy [1] does include a
statement which may relate to this data collection: “We keep
arecord of your log-ins to accounts for which you use Authy
for 2-factor authentication." However, this statement is vague
and further research is required to determine whether users



understand that this data is collected.

Phase 3: Analyze App Binary. We downloaded the An-
droid Package (APK) file for the Authy app from APK Mir-
ror' and decompiled it using the open source tools dex2jar”
and CFR.® After reviewing the non-obfuscated code of the
decompiled binary, we were confident that all of the crypto-
graphic details outlined in Authy’s blog post [3], discussed in
Phase 1, accurately reflected the functionality of the app.

However, the statically defined PBKDF2 work factor of 103
rounds is too low to meaningfully slow offline attacks given
the capabilities of modern hardware. OWSAP recommends
a minimum of 10* rounds and suggests up to 107 in higher
security environments [5].

Also, the Authy app does not utilize a MAC, which is the
common approach to provide message integrity since AES-
CBC does not provide authentication natively. Instead, to
determine if the user provided the correct password during
recovery, the app uses a custom heuristic that relies on the
de facto standard [4] Base32 encoding of the TOTP secret in
the QR code during TOTP 2FA setup. The app derives the
encryption key from the password, decrypts the ciphertext,
and considers the process successful if the resulting plain-
text is valid Base32 format. Unfortunately, encrypting the
TOTP secret in Base32 format makes the resulting ciphertext
vulnerable to offline attacks, which we discuss in the next
section.

Phase 4: Attack Ciphertext Offline. To prove that we cor-
rectly identified the cryptography used to generate TOTP
backups, we wrote a script in Go which accepted the follow-
ing inputs: (1) the ciphertext of the encrypted TOTP secret; (2)
the associated salt; and (3) the password that we chose when
enabling backups. The script implements the same decryption
logic as the Authy app and decrypts the input ciphertext to
verify that the resulting plaintext matches the expected TOTP
secret.

Unlike our analysis in the lab, an external attacker will
not know the user’s backup password. However, the fact that
Authy encrypts TOTP secrets in Base32 format makes the
ciphertexts vulnerable to offline “cracking” attacks. The prob-
ability that a single random password guess will result in
plaintext that is valid Base32 is approximately 1072 (see Ap-
pendix A for calculations), which means that any guess which
does result in valid Base32 is very likely to be the user’s real
recovery password.

Considering that the Authy app allows backup passwords
as short as 6 characters, the effective guessing techniques em-
ployed by modern password cracking tools alone are almost
certainly enough to crack the ciphertext of TOTP secrets for

"https://www.apkmirror.com
2https://github.com/DexPatcher/dex2jar
3https://github.com/leibnitz27/cfr

normal users who rely on weak passwords. However, the fact
that TOTP backups include the victim’s account usernames
in plaintext increases the efficacy of the attack. Prior work
by Wang et. al. [16] used personal information about the vic-
tim to achieve “success rates over 73% against normal users
and over 32% against security-savvy users" within only 100
attempts during online guessing attacks. Here, the attacker
could use the victim’s account usernames to harvest personal
information from publicly available sources and make orders
of magnitude more guesses in their offline attack.

Phase 5: Analyze Recovery Workflow. We analyzed Au-
thy’s recovery workflow for users who have lost their device,
but still have access to their phone number. Other recovery
scenarios will be reviewed in future work.

The attacker can enter the user’s phone number on Authy’s
website to submit a recovery request. The user is immediately
notified via SMS and email, and the recovery process only be-
gins if they click a link in the email; otherwise, the attack fails.
Even if the user accidentally confirms the malicious recovery
request, they have ample opportunity to cancel the process
within the 24 hour delay period [7] by clicking a cancel link in
one of several confirmation and progress notifications sent via
email. We believe that it would be infeasible for an attacker
to obtain the ciphertext via this workflow unless they also
compromised the victim’s email account.

Phase 6: Recommend Improvements. Our analysis found
three security and privacy issues that should be addressed.
First, the TOTP backups include the name and issuer fields in
plaintext, which informs Authy which third party services the
user utilizes and their account usernames on those services.
The simple remedy is to encrypt those fields before including
them in the TOTP backup.

Second, encryption keys are derived from user provided
passwords using PBKDF2 with only 10? rounds as a work
factor, which is lower than current best practices. At a mini-
mum, Authy should increase the statically defined work factor
to at least 10*, the minimum recommended by OWASP [5].
Switching to a memory-hardened and/or cpu-hardened key
derivation function, such as scrypt, berypt, or Argon2, would
allow the app to dynamically calculate the work factor based
on the actual resources available, thus allowing higher end
devices to employ better security.

Finally, the encrypted TOTP secrets are vulnerable to of-
fline attack because they are encrypted in Base32 format.
Offline attacks would be infeasible if the TOTP secrets were
Base32 decoded before encrypting because plaintext TOTP
secrets are random values and there would be no heuristic
to differentiate one password guess from another. However,
this would impact the usability of the app because it would
not be possible to display a message during recovery if the
user provides the wrong password. Future work is required to
recommend a solution that balances security and usability.


https://www.apkmirror.com
https://github.com/DexPatcher/dex2jar
https://github.com/leibnitz27/cfr

Responsible Disclosure to Authy. We shared a draft of this
paper with Authy on July 6, 2020. Authy was receptive, had
several internal teams review our paper, and started a dialogue
to discuss our findings.

4 Conclusion and Future Work

In this paper, we have shown that the implementation details
of the backup and recovery mechanisms of TOTP apps can
introduce both security and privacy issues for end users. We
plan to utilize the proposed assessment methodology to ana-
lyze other prevalent TOTP apps to determine whether these
issues are pervasive. Our eventual goal is to propose a set
of design requirements that all TOTP apps should follow to
avoid introducing security and privacy issues via their backup
and recovery mechanisms.

Acknowledgments

This research received funding from the Center for Long-Term
Cybersecurity (CLTC) at U.C. Berkeley.

References

[1] Authy app privacy notice. Available: https://web.ar
chive.org/web/20200616001529/https://www.tw
ilio.com/legal/privacy/authy. [Online; accessed:
16-June-2020].

[2] Hashcat plugin development guide. Available: https:
//github.com/hashcat/hashcat/blob/master
/docs/hashcat-plugin-development-guide.md.
[Online; accessed: 22-June-2020].

[3] How Authy 2FA backups work. Available: https:
//web.archive.org/web/20200616101909/https:
//authy.com/blog/how-the-authy-two-factor-
backups-work/. [Online; accessed: 16-June-2020].

[4] Key uri format. Available: https://github.com/goo
gle/google-authenticator/wiki/Key-Uri-Form
at. [Online; accessed: 12-May-2020].

[5] Password storage cheat sheet. Available: https://
web.archive.org/web/20200617224006/https:
//cheatsheetseries.owasp.org/cheatsheets
/Password_Storage_Cheat_Sheet.html#pbkdf2.
[Online; accessed: 17-June-2020].

[6] PKCS #5: Password-based cryptography specification
version 2.0. Available: https://www.ietf.org/rfc
/rfc2898.txt. [Online; accessed: 19-June-2020].

[7] Restoring authy access on a new, lost, or inaccessible
phone. Available: https://web.archive.org/web/

(8]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

20200607061849/https://support.authy.com/hc
/en-us/articles/115012672088-Restoring-Aut
hy-Access-on-a-New-Lost-or-Inaccessible-Ph
one. [Online; accessed: 07-June-2020].

TOTP: Time-based one-time password algorithm. Avail-
able: https://tools.ietf.org/html/rfc6238.
[Online; accessed: 02-Oct-2019].

Andrey Belenko and Dmitry Sklyarov. “secure pass-
word managers” and “military-grade encryption” on
smartphones: Oh, really? Blackhat Europe, page 56,
2012.

Karthikeyan Bhargavan and Antoine Delignat-Lavaud.
Web-based attacks on host-proof encrypted storage. In
WOOT, pages 97-104, 2012.

Joseph Bonneau. The science of guessing: analyzing an
anonymized corpus of 70 million passwords. In IEEE
Symposium on Security and Privacy, pages 538-552,
2012.

Joseph Bonneau, Soren Preibusch, and Ross Anderson.
A birthday present every eleven wallets? the security of
customer-chosen banking pins. In International Con-
ference on Financial Cryptography and Data Security,
pages 25-40. Springer, 2012.

Zhiwei Li, Warren He, Devdatta Akhawe, and Dawn
Song. The emperor’s new password manager: Security
analysis of web-based password managers. In 23rd
USENIX Security Symposium, pages 465—479, 2014.

Joel Reardon, Alvaro Feal, Primal Wijesekera, Amit
Elazari Bar On, Narseo Vallina-Rodriguez, and Serge
Egelman. 50 ways to leak your data: An exploration of
apps’ circumvention of the android permissions system.
In Proceedings of the 28th USENIX Security Symposium,
pages 603-620, 2019.

Blase Ur, Sean M Segreti, Lujo Bauer, Nicolas
Christin, Lorrie Faith Cranor, Saranga Komanduri,
Darya Kurilova, Michelle L Mazurek, William Melicher,
and Richard Shay. Measuring real-world accuracies
and biases in modeling password guessability. In 24th
USENIX Security Symposium, pages 463—481, 2015.

Ding Wang, Zijian Zhang, Ping Wang, Jeff Yan, and
Xinyi Huang. Targeted online password guessing: An
underestimated threat. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications
security, pages 1242-1254, 2016.


https://web.archive.org/web/20200616001529/https://www.twilio.com/legal/privacy/authy
https://web.archive.org/web/20200616001529/https://www.twilio.com/legal/privacy/authy
https://web.archive.org/web/20200616001529/https://www.twilio.com/legal/privacy/authy
https://github.com/hashcat/hashcat/blob/master/docs/hashcat-plugin-development-guide.md
https://github.com/hashcat/hashcat/blob/master/docs/hashcat-plugin-development-guide.md
https://github.com/hashcat/hashcat/blob/master/docs/hashcat-plugin-development-guide.md
https://web.archive.org/web/20200616101909/https://authy.com/blog/how-the-authy-two-factor-backups-work/
https://web.archive.org/web/20200616101909/https://authy.com/blog/how-the-authy-two-factor-backups-work/
https://web.archive.org/web/20200616101909/https://authy.com/blog/how-the-authy-two-factor-backups-work/
https://web.archive.org/web/20200616101909/https://authy.com/blog/how-the-authy-two-factor-backups-work/
https://github.com/google/google-authenticator/wiki/Key-Uri-Format
https://github.com/google/google-authenticator/wiki/Key-Uri-Format
https://github.com/google/google-authenticator/wiki/Key-Uri-Format
https://web.archive.org/web/20200617224006/https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#pbkdf2
https://web.archive.org/web/20200617224006/https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#pbkdf2
https://web.archive.org/web/20200617224006/https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#pbkdf2
https://web.archive.org/web/20200617224006/https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#pbkdf2
https://www.ietf.org/rfc/rfc2898.txt
https://www.ietf.org/rfc/rfc2898.txt
https://web.archive.org/web/20200607061849/https://support.authy.com/hc/en-us/articles/115012672088-Restoring-Authy-Access-on-a-New-Lost-or-Inaccessible-Phone
https://web.archive.org/web/20200607061849/https://support.authy.com/hc/en-us/articles/115012672088-Restoring-Authy-Access-on-a-New-Lost-or-Inaccessible-Phone
https://web.archive.org/web/20200607061849/https://support.authy.com/hc/en-us/articles/115012672088-Restoring-Authy-Access-on-a-New-Lost-or-Inaccessible-Phone
https://web.archive.org/web/20200607061849/https://support.authy.com/hc/en-us/articles/115012672088-Restoring-Authy-Access-on-a-New-Lost-or-Inaccessible-Phone
https://web.archive.org/web/20200607061849/https://support.authy.com/hc/en-us/articles/115012672088-Restoring-Authy-Access-on-a-New-Lost-or-Inaccessible-Phone
https://tools.ietf.org/html/rfc6238

A Evaluating the Efficacy of Authy’s Base32
Heuristic

The following is the mathematical evaluation of the Base32
heuristic used during the recovery process to determine
whether the user provided the correct password.

We must answer the question: Given the ciphertext of the
encrypted TOTP secret, what is the probability that a single
password guess will generate a plaintext output that is valid
Base32? Recalling that an ASCII character has 28 = 256
possible bit permutations and that Base32 allows 32 valid
characters (A-Z and 2-7), the probability that the ASCII rep-
resentation of an L-length string is valid Base32 is:

= P(single byte is valid Base32)" = (32/256)F = 0.125"

The probability that a single password guess for a 32 byte
TOTP secret (L = 32), which is a common length used in
industry, will generate valid Base32 is:

—=0.1252 ~1.26%107%

With a very high probability, this heuristic will accurately
verify whether the user entered the correct recovery password
because it is extremely unlikely that the decryption process
will result in plaintext that is valid Base32 format if the en-
cryption key is derived from an incorrect password. TOTP
secrets are random values, which means that there would be
no heuristic to differentiate one password guess from another
if TOTP secrets were Base32 decoded before encryption.



	Introduction
	Assessment Methodology
	Case Study: Authy 2FA
	Conclusion and Future Work
	Evaluating the Efficacy of Authy's Base32 Heuristic

