

On Conducting Systematic Security & Privacy Analyses of TOTP 2FA Apps

Case-Study: Authy 2FA

Conor Gilsenan U.C. Berkeley Noura Alomar U.C. Berkeley Serge Egelman U.C. Berkeley / ICSI

2FA improves account security

2FA Methods

• SMS

- Time-based One-time Passwords (TOTP)
 - e.g. Google Authenticator
- Push notifications
 - e.g. Duo Push
- WebAuthn
 - e.g. USB security keys

Research Questions

1. What security and privacy issues exist in the backup & recovery functionality of prevalent TOTP 2FA apps? 2. How can they be fixed?

Research Questions

1. What security and privacy issues exist in the backup & recovery functionality of prevalent TOTP 2FA apps? 2. How can they be fixed?

Research Questions

- 1. What security and privacy issues exist in the backup & recovery functionality of prevalent TOTP 2FA apps?
- 2. How can they be fixed?

Background & Motivation

TOTP: QR Code

Please use the TOTP protocol

Alice's email address or username

The shared secret

The service provider

Anyone can build a TOTP 2FA app!

Dozens of TOTP Apps

Blizzard Authenticator Blizzard Entertainment, Inc.

2FA Authenticator (2FAS) 2FAS

LastPass Authenticator LogMeIn, Inc.

FreeOTP Authenticator Red Hat

Duo Mobile Duo Security, Inc.

andOTP - Android OTP Authenticator Jakob Nixdorf

Salesforce Authenticator

Salesforce.com, inc.

SAASPASS Authenticator 2FA App & Password Manager SAASPASS

Microsoft Authenticator Microsoft Corporation

Authy 2-Factor Authentication

TOTP Authenticator – 2FA with Backup & Restore BinaryBoot

Google Authenticator

How should our app generate the OTP?

TOTP: Generate & Verify OTP

RFC says:

OTP ≈ HMAC-SHA-1 (shared secret + time)

RFC6238 - https://tools.ietf.org/html/rfc6238

How should our app backup the secret?

TOTP: Backup the secret

RFC says:

RFC6238 - https://tools.ietf.org/html/rfc6238

https://authy.com/blog/how-the-authy-two-factor-backups-work/

Related Work

- People pick mostly weak passwords
 - easy for attackers to crack

[1] Bonneau, Joseph. "The science of guessing: analyzing an anonymized corpus of 70 million passwords." 2012 IEEE Symposium on Security and Privacy.

[2] Bonneau, Joseph, Sören Preibusch, and Ross Anderson. "A birthday present every eleven wallets? The security of customer-chosen banking PINs." *International Conference on Financial Cryptography and Data Security*. Springer, Berlin, Heidelberg, 2012.

[3] Ur, Blase, et al. "Measuring real-world accuracies and biases in modeling password guessability." (USENIX Security 15).

- Bhargavan and Delignat-Lavaud (2012)
 - ideal: all data is encrypted on the clients
 - <u>reality</u>: flaws in client side implementations

Bhargavan, Karthikeyan, and Antoine Delignat-Lavaud. "Web-based Attacks on Host-Proof Encrypted Storage." WOOT. 2012.

Belenko, Andrey, and Dmitry Sklyarov. ""Secure Password Managers" and "Military-Grade Encryption" on Smartphones: Oh, Really?." *Blackhat Europe* (2012): 56.

Li, Zhiwei, et al. "The emperor's new password manager: Security analysis of web-based password managers." (USENIX Security 14).

- Bhargavan and Delignat-Lavaud (2012)
 - <u>ideal</u>: all data is encrypted on the clients
 - <u>reality</u>: flaws in client side implementations
- Belenko and Sklyarov (2012)
 - <u>one day</u> to brute force master passwords up to 10-15 characters in length

Bhargavan, Karthikeyan, and Antoine Delignat-Lavaud. "Web-based Attacks on Host-Proof Encrypted Storage." WOOT. 2012.

Belenko, Andrey, and Dmitry Sklyarov. ""Secure Password Managers" and "Military-Grade Encryption" on Smartphones: Oh, Really?." *Blackhat Europe* (2012): 56.

Li, Zhiwei, et al. "The emperor's new password manager: Security analysis of web-based password managers." (USENIX Security 14).

- Bhargavan and Delignat-Lavaud (2012)
 - <u>ideal:</u> all data is encrypted on the clients
 - <u>reality</u>: flaws in client side implementations
- Belenko and Sklyarov (2012)
 - <u>one day</u> to brute force master passwords up to 10-15 characters in length
- Li et. al. (2014)
 - Analyzed 5 web-based password managers
 - Not enough detail to replicate

Bhargavan, Karthikeyan, and Antoine Delignat-Lavaud. "Web-based Attacks on Host-Proof Encrypted Storage." WOOT. 2012.

Belenko, Andrey, and Dmitry Sklyarov. ""Secure Password Managers" and "Military-Grade Encryption" on Smartphones: Oh, Really?." *Blackhat Europe* (2012): 56.

Li, Zhiwei, et al. "The emperor's new password manager: Security analysis of web-based password managers." (USENIX Security 14).

Analysis Workflow

Case-Study: Authy 2FA

One App for All your Accounts

<u>Goals</u>

1. Gather published technical details

a. Do not start analysis blind

Network Capture

<u>Goals</u>

- 1. Obtain ciphertext.
- 2. Which fields are not encrypted?
- 3. Personal information required?

Network Capture

- Take specific actions using the app
 - Add 1st TOTP secret
 - Enable backup
 - Add 2nd TOTP secret

- We captured traffic on-device before TLS
 - closed source tools from Reardon et al

Joel Reardon, Álvaro Feal, Primal Wijesekera, Amit Elazari Bar On, Narseo Vallina-Rodriguez, and Serge Egelman. 50 ways to leak your data: An exploration of apps' circumvention of the android permissions system. In *Proceedings of the 28th USENIX Security Symposium*, pages 603–620, 2019. **31**

- We captured traffic on-device before TLS

 closed source tools from Reardon et al
- Name and issuer fields are **not** encrypted

Joel Reardon, Álvaro Feal, Primal Wijesekera, Amit Elazari Bar On, Narseo Vallina-Rodriguez, and Serge Egelman. 50 ways to leak your data: An exploration of apps' circumvention of the android permissions system. In *Proceedings of the 28th USENIX Security Symposium*, pages 603–620, 2019.

Static Analysis

<u>Goals</u>

- 1. Which crypto is used?
 - a. cipher, mode, etc
- 2. How is <u>decryption</u> verified?
 - a. "Sorry, wrong recovery password!"

Static Analysis

Encrypted?			Key derivation	Cipher & mode	Decryption verification?
secret	name	issuer			
Yes	No	No	- PBKDF2 - 1k rounds	AES-CBC	Heuristic: Valid Base32?

Encrypted?			Key derivation	Cipher & mode	Decryption verification?
secret	name	issuer			
Yes	No	No	- PBKDF2 - 1k rounds	AES-CBC	Heuristic: Valid Base32?

Attack Ciphertext Offline

<u>Goals</u>

1. Difficulty of ciphertext => plaintext?

Attack Ciphertext Offline

- Adapt password cracking tools to "crack" ciphertexts
 - e.g. Hashcat module framework

- Base32 heuristic enables offline attacks
 - Effective with **high probability** for weak backup pwds

P(plaintext from single guess is Base32) $\approx 10^{-29}$

assuming 32 byte / 256 bit secret

Recovery Workflow Analysis

<u>Goals</u>

- 1. Diagram the recovery workflow
 - a. How could an attacker access the ciphertext?
 - b. Opportunities for user to identify/stop the attack?

Recovery Workflow Analysis

🚫 A U T H Y

- Very difficult to obtain TOTP backups
 without compromising victim's email
 - victim must approve recovery request via email
 - 24 hour delay
 - multiple notifications include cancel link

Recommend Fixes

1. Encrypt name and issuer fields

- 2. Strengthen key derivation
 - use <u>at least</u> 10k rounds for PBKDF2
 - calculate workfactor based on available resources
 - Argon2, bcrypt, or scrypt

3. Decode Base32 before encryption

improves security, but hurts usability

Responsible Disclosure

Future Work

Blizzard Authenticator Blizzard Entertainment, Inc.

2FA Authenticator (2FAS) 2FAS

LastPass Authenticator LogMeIn, Inc.

FreeOTP Authenticator Red Hat

Duo Mobile Duo Security, Inc.

andOTP - Android OTP Authenticator Jakob Nixdorf

Salesforce Authenticator

Salesforce.com, inc.

SAASPASS Authenticator 2FA App & Password Manager SAASPASS

Microsoft Authenticator Microsoft Corporation

Authy 2-Factor Authentication

TOTP Authenticator – 2FA with Backup & Restore BinaryBoot

Google Authenticator

Thank you! Questions?

Email: conorgilsenan@berkeley.edu Twitter: @conorgil

Conor Gilsenan U.C. Berkeley Noura Alomar

U.C. Berkeley

Serge Egelman U.C. Berkeley / ICSI