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ABSTRACT
We empirically analyzed whether and how real-world web-
sites take appropriate measures to prevent unauthorized ac-
cesses to their users’ accounts. We tried to get access to our
own accounts on 12 different services, pretending to have for-
gotten our password and entering alternatives before taking
further measures. Our findings indicate that providers’ mea-
sures to counter trawling online guessing attempts widely
differ. We faced CAPTCHAs, temporal blocking, and lock-
outs from our accounts. We observed that large services
combine many mechanisms. In the trade-off between se-
curity and usability smaller sites lock down accounts and
involve their users. We even observed a service that didn’t
rate-limit at all, which burdens users with strong passwords.

1. INTRODUCTION
Common advice given to users for protecting their online
accounts is to use strong passwords, not to re-use a password
for more than one account, not to write it down, and ideally
to change it frequently [30]. These recommendations require
substantial cognitive effort and are virtually impossible to
follow for end-users [25] as shown by the escalating password
reuse problem [29]. This observation has started a process
to adapt recommendations to more realistic advice [27]. For
example, to group accounts and reuse passwords within the
same category [17], or no longer recommending to frequently
change a password [28].

As a countermeasure against weak passwords, online services
implement rate-limiting to prevent online guessing attacks.
Rate-limiting comes in a variety of flavors. Typically, the
number of failed login attempts per account is counted, and
if it rises beyond a threshold, services slow down verification
of subsequent login attempts. Moreover, it can require the
user to solve CAPTCHAs or provide additional authentica-
tion factors, notify the user of suspicious behavior, or just
lock the account, either silently or with notification.
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In this paper, we take a closer look at real-world implemen-
tations of rate-limiting, and the effects on strength require-
ments for online passwords. In more detail: First, we explore
if and how a sample of 12 larger websites from a set of di-
verse categories implements rate-limiting in practice. We
model a realistic attack scenario to observe the website’s
behavior. We find a wide range of implementation choices,
e. g., when rate-limiting takes effect, how the attack is slowed
down, and if users are notified or required to take additional
steps. Second, our findings provide evidence that password
strength is not the (only) driving factor for account secu-
rity, and that rate-limiting may provide an alternative, and
potentially even better solution against password guessing
than stronger passwords.

The results presented in this paper indicate that the weak
memorability of strong passwords can be traded for tight
rate-limiting on the server side. This potentially has a sig-
nificant impact on the usability of password-based authenti-
cation on online services. However, strict rate-limiting likely
has usability problems as well, which are, to the best of our
knowledge, not well understood. Fingerprinting techniques
and risk-based authentication might help in reducing the
burden for the user. Furthermore, it is important that these
findings only hold for online services, where rate-limiting
and throttling can reliably be implemented. It does not at
all hold for scenarios where offline guessing can be applied,
e. g., for password managers, hard-disk encryption, and of-
ten for device unlock.

Outline In Section 2 we give an introduction to the related
work in the area of rate-limiting. In Section 3 we explain our
methodology and describe our study procedure. In Section 4
we present the results and discuss the implications of the
findings, and conclude in Section 5.

2. RELATED WORK
In the following, we introduce the relevant terminology and
give an overview of helpful related work.

2.1 Password and Account Security
It is challenging for a user to estimate the strength of a
password [35]. Common methods like password strength
meters [15], password composition policies [32], and black-
lists [21] are used to nudge or force a user to create pass-
words that provide a reasonable level of security. Another
option to reinforce the security of accounts is two-factor au-
thentication (2FA). While usability studies [14] found that
users believe that 2FA is easy to use and enabling it made



their account more secure, adoption of multi-factor authen-
tication is still low, and users often complain (depending on
the contexts of use) that 2FA is annoying.

Nowadays, major web services start to utilize suspicious ac-
tivity detection [18, 26] and try to limit the success rate of
so-called credential stuffing attacks, i. e., attacks that exploit
the password reuse behavior of users [29], by proactively
searching for credential leaks of third-party services [34].

2.2 Rate-Limiting and Throttling
The work that comes closest to our study is from Bonneau
and Preibusch [9]. They reported on the poor rate-limiting
deployed on the Web, even on high profile sites such as
Amazon and eBay, in 2010. An overview of rate-limiting
techniques (CAPTCHAs, blocking, and account locking) is
given by Florêncio et al. [16]. As it is unlikely to find a single
technology that perfectly solves all issues, a combination of
rate-limiting mechanisms is required [7].

CAPTCHAs (for better readability, we write the acronym
in lowercase) can be quite effective. However, they are
susceptible to automated attacks [5, 33]. Nowadays, there
are even crowdworker-driven automated solving services [19]
that could be leveraged, depending on the attacker’s bud-
get. It remains a cat-and-mouse game between developers
and attackers; furthermore captchas are often criticized for
their usability on desktops [12] and smartphones [31]. There
exist solutions that require answering fewer captchas for le-
gitimate users [4].

Another option to throttle the number of illegitimate at-
tempts is to temporarily block access (e. g., IP, cookie, or
session-blocking). However, too restrictive policies, i. e., IP
range-blocking, can degrade user experience and cause ad-
ditional service desk calls [1]. For example, in preliminary
tests, we found that many airlines block network traffic orig-
inating from the Tor network and request affected users to
call the help desk. Moreover, botnets that are often used to
execute guessing attacks are relatively wide-spread across
the IP address space which escalates blocking and makes it
less effective [24].

Even more severe is account locking. Here, the number of
allowed guesses is not tied to the originating IP but the re-
quested account. Exceeding a threshold causes the account
to be locked, and requires either time, additional verification
(e. g., via email or SMS), or even contact with the customer
service to unlock the account again. While relatively secure,
the biggest issue are lockout policies [10] that result in a
denial of service vulnerability and a usability burden.

Relatively new, but already deployed by large services, are
techniques known from risk-based authentication [18, 26]
like browser fingerprinting [2].

3. METHODOLOGY
In this section, we explain our attacker model and the method-
ology of our study. We explain how we selected the websites
we analyzed, the passwords we guessed and how we captured
the rate-limiting employed by the service providers.

3.1 Attacker Model
In this work, we are concerned with online guessing attacks.
In such an attack, the adversary is using a login form on
a website or a similar mechanism to test different password

candidates. Thus, the number of guesses an attacker can
test is limited by the remote server. Typically, one considers
between 100 and 1 000 allowed guesses within 30 days [20,
37] reasonable. If the correct password is tested, one will
gain access otherwise one will be denied access.

In our study, we simulate a trawling attacker [8], i. e., the ad-
versary is interested in the takeover of any account. Trawl-
ing attackers are well known in the context of, e. g., answer-
ing security questions [8]. Such attackers guess passwords
in decreasing order of likelihood, i. e., most frequent pass-
words first, based on population-wide statistics [6]. More
severe and starting to become more popular are targeted
attacks, where an adversary is focused on a specific vic-
tim [37]. In such a scenario, personal information [13] and
even leaked passwords [23] from breached services that (al-
legedly) belong to the victim are exploited to make more
targeted guesses.

3.2 Selecting Websites
We wanted to model a realistic attack that also targets ser-
vices that already make use of modern risk-based authenti-
cation [18, 26] techniques. To avoid an atypical influence of
new accounts without history and value on such systems, we
opted to use existing accounts. To prevent any harm from
persons not involved, we chose to guess passwords for our
own accounts. We extracted the list of 249 domains from one
of our password managers and grouped them into 15 disjoint
sets, where we loosely followed the categorization by Pear-
man et al. [29]. Next, we limited the set to services with a
global Alexa rank [3] below 5 000 and selected two services
from each of the six largest groups. We strived to create a di-
verse sample, covering both major services but also smaller
or medium-sized websites. The services we tested were Ama-
zon, Dropbox, Facebook, Google, Grammarly, IKEA, Netflix,
Plex, Trainline, Twitter, Uber, and Yahoo.

3.3 Selecting Passwords
The baseline for the passwords we tested was the Pwned
Passwords v2 list of 500 million breached passwords, re-
cently published by Troy Hunt [22]. For each service, we
created a custom list of the top 25 passwords accepted by
the service in two steps: First, we removed all passwords
that did not comply with the service’s composition policy
from our baseline. Second, we manually verified the valid-
ity of the remaining passwords in ascending order, i. e., we
tested if each password was accepted by the service to cre-
ate a new account, eventually reaching an individual list
for every particular service. The second step was inevitable
due to several services being non-transparent in presenting
which passwords they accept, e. g., Google requires “8 or
more characters,” but 12345678 is not allowed to use. None
of the custom lists contained the actual password used for
our account at that particular service.

3.4 Measuring Rate-Limiting
For each account, we performed 25 login attempts and ob-
served the provider’s behavior. Choosing a number too high
would comprise an attack, which is to a certain extent un-
ethical – even if we are trying to attack our accounts – and
might also be illegal. We chose a number greater than 10,
which is recommended from a usability perspective [10], but
well below 100, which is specified as an upper bound by
NIST [20] to throttle online guessing attacks. We further



think that 25 attempts are sufficient to gain a first impres-
sion of how providers behave, without unnecessarily wasting
their resources. All attempts were performed by manually
entering the credentials into the login forms on the services’
websites using the Tor Browser. We have chosen to use the
Tor network as it provides a convenient option to obtain new
IP addresses (required to circumvent session/IP blocking).
Furthermore, we consider this to be a more realistic attack
scenario (cf. Section 2). We captured the countermeasures
providers put in place during our study and logged how they
influenced our ongoing procedures. After the 25 adversarial
login attempts, we immediately tried to log in into the tested
account by entering the correct credentials and observed the
provider’s behavior. We tried to log in using the same Tor
session as for the latest adversarial attempt if the authenti-
cation failed we also attempted to log in using a device and
browser known by the service.

4. RESULTS
In this section, we report and discuss our findings.

4.1 Overview
In our study, we have observed that the rate-limiting ap-
plied by service providers to counter adversarial login at-
tempts widely differ. We provide a summary of our findings
in Table 1.

We aimed to perform 25 adversarial login attempts. How-
ever, two services locked down our accounts, IKEA after
7 attempts, and Grammarly after 13 attempts. For the
10 remaining services, we were able to conduct the full set
of 25 guesses, which took between 3 and 19 minutes due to
diverging realizations of the throttling employed by the site
operators. After the 25th attempt, we were able to log in
into six accounts by entering the correct credentials – from
the same Tor session without switching our IP address. We
have denoted this with a check mark in the Login column
in Table 1. For one service we tested – the British rail plat-
form Trainline – we observed no rate-limiting throughout
all 25 consecutive login attempts. We were able to log in
into the account immediately afterward. It might, of course,
be possible that our number of login attempts was still be-
low Trainline’s rate-limiting threshold, but we think that
this service does not adequately protect its accounts. For
all other services, we saw varying realizations with differ-
ent levels of intensity. In the following, we describe how
the services we tested used captchas, account locking, and
blocking to protect user accounts. We further report if and
how we were notified of adversarial activity and which fur-
ther measures were put in place after logging in with the
correct credentials.

4.2 CAPTCHAs
Five services leveraged captchas to challenge the adversary.
Dropbox, Uber, and Yahoo required us to solve a captcha
even before we could perform the first login attempt, which
we attribute to the use of the Tor network. After solving
the initial captcha, the further procedures could not have
been more diverging. While there were no further captchas
to be solved for Yahoo, Dropbox challenged us with con-
secutive captchas after every single login attempt. In sev-
eral cases, we had to solve three to five captchas (Google’s
reCAPTCHA), which became (subjectively) more difficult
over time. Uber presented two captchas after the 11th and

22nd attempt. Captchas were further employed by Ama-
zon and Google. The first occurrence for Google was after
the 11th attempt, followed by the 14th and then every other
attempt.

Manually solving captchas was quite time-consuming (for
Dropbox it took 19 minutes to perform 25 attempts and
to subsequently successfully sign in), but it remains unclear
how effective this measure is against a sophisticated adver-
sary. Captchas can be quite easy to solve for machines [5,
33, 11], there are even crowdworker-driven automated solv-
ing services [19]. Especially for Dropbox, captchas were the
only rate-limiting we could observe, and we were able to
log in afterward from within the adversarial session. We do
not think that Dropbox takes security lightly, but if there
are no further mechanisms deployed (after 25 guesses) their
account security would be at risk.

4.3 Account Locking
We observed account lockouts for four services. While IKEA
and Grammarly explicitly locked our accounts, lockouts were
non-obvious and not reported to us in the cases of Netflix
and Facebook. For Facebook, we were able to perform login
attempts without barriers, but the final attempt with our
correct password was simply rejected like every previous at-
tempt with a wrong password. The website’s response to
the correct password did not differ from its reaction to any
wrong password. Even when logging in from another known
device, Facebook denied access stating that there were too
many incorrect login attempts. A successful login was possi-
ble approx. 10 minutes later using a known/trusted browser
configuration. In the case of Netflix, logging in with the cor-
rect password was also refused – both from the Tor session
and from a known device. However, the login was possible
approx. one hour later, without Netflix providing us any
further notice.

Locking the account is a quite effective mechanism in terms
of account security. From a usability perspective, locking
is annoying for the user, and it opens the door for Denial
of Service attacks. This specifically applies to Grammarly
and IKEA, which burden users to take additional steps such
as using the fallback authentication mechanism. Facebook
and Netflix comprise a much better solution in only setting
a temporal lockout. If users did not try to log in within this
time span, they would not be bothered by the incident, while
their accounts remain continuously protected from unautho-
rized accesses. Moreover, both do well in presenting the
same reject message after the correct or an incorrect pass-
word has been entered. For that reason (and if there are
not other side-channels such as response timing), an attacker
would not notice if having guessed the password successfully.

4.4 Blocking
Several services rate-limited by blocking our IP address after
a certain number of failed logins, i. e., we had to switch our
IP generating a new Tor identity to continue trying to log
in. For example, Amazon did not allow us to enter creden-
tials after any four consecutive failed logins from the same
session. Twitter blocked our IP address after 16 failed login
attempts, mentioning a 60 minutes ban for further attempts.
However, from a different IP address, we could immediately
continue to enter passwords. Netflix was quite creative in
that it pretended to have “technical difficulties” making it



Table 1: Results Overview

Alexa Service Category # Guesses Time Login CAPTCHA Lockout Blocking 2nd Step Notification

1 Google Communication 25 10 Min. 7 11,14,16,18,20,22,24 – ≤ 25 – –
3 Facebook Social Network 25 4 Min. 7 – ≤ 25 – – –
7 Yahoo Communication 25 5 Min. 7 0 – ≤ 25 Email Code Suspicious

12 Twitter Social Network 25 4 Min. 3 – – 16 Phone No. Sign-in, Suspicious
30 Netflix Entertainment 25 7 Min. 7 – ≤ 25 7,14,21,22,...,25 – –
84 Amazon Shopping 25 15 Min. 3 15,19,23 – 4,8,12,16,20,24 Email Code –
89 Dropbox Software 25 19 Min. 3 0,...,24 – – – Sign-in

285 IKEA Shopping 7 2 Min. 7 – 7 – – Account Locked
664 Grammarly Software 13 6 Min. 7 – 13 9,11,13 – –
992 Plex Entertainment 25 7 Min. 3 – – 7,14,21 – –

1220 Uber Travel 25 9 Min. 3 0,11,22 – 11,22 SMS Code –
4333 Trainline Travel 25 3 Min. 3 – – – – –

impossible to further trying to log in. Their rate-limiting
occurred after the 7th, 14th, 21st, and every consecutive at-
tempt, requiring us to switch the IP address. Their blocking
was combined with the temporal account lockout, as “tech-
nical difficulties” also occurred when we entered correct cre-
dentials from a known device. However, it was not apparent
after which particular attempt the lockout was put in place.

Similarly, it was also not apparent at which point Yahoo’s
blocking took effect. We could freely enter 25 passwords for
Yahoo, each one and also the correct password was simply
rejected with the same message. When we switched to a new
IP, logging in with the correct password was possible after
entering a code Yahoo sent to us via an alternative email
address. This indicates that adversarial behavior had been
detected, and our first IP had been blocked without mak-
ing this apparent. Similar to both, lockouts and blocking,
we consider rate-limiting that silently takes effect the best
option. In such a scenario, any further guesses are simply
useless, but the attacker has no evidence for this and keeps
trying. Even if the correct password is entered by chance,
the login is denied, and the account remains protected.

4.5 Fingerprinting
The Tor browser warns its users when websites try to ex-
tract HTML5 canvas image data, which may be used to
uniquely identify a computer. We observed such warnings
on the login websites of Amazon, Facebook, Uber, and Ya-
hoo. Additionally, we found fingerprinting data in HTTP
requests of Google, Netflix, and Twitter. While we are un-
able to tell, whether the fingerprints are used for authenti-
cation decisions and rate-limiting or only for tracking and
marketing, they are collected. For example the login re-
quest of Yahoo includes, besides IP, User Agent, and refer-
rer, 22 client-side features that are generated by the Fin-
gerprintjs2 library [36]. The fingerprint includes language,
window size, time zone, canvas-, local storage-, and WebGL
support, hashes of installed plugins and fonts, as well as
features like has lied-language, resolution, OS, and browser.

4.6 Second Factors and Notifications
When finally logging in with the correct credentials, a few
services required a second step, before we could successfully
log in. Amazon and Yahoo emailed a code we had to en-
ter, Uber sent a code via SMS. In the case of Twitter, we
had to enter the phone number associated with the account.
Dropbox informed us via email about a new sign-in after
successfully logging in, Yahoo reported suspicious behavior,
and Twitter did both. It is unknown whether such noti-
fications contribute to security or rather raise uncertainty

among users, for example in the case of false alerts (e. g.,
during traveling). If providers have successfully detected
and blocked adversarial activity, bothering users with this
could be considered questionable.

4.7 Limitations
Although the study was planned and conducted carefully,
it comprises a few limitations related to how we guessed
passwords. Due to limiting our study to only 25 guesses,
we cannot provide an extensive review of rate-limiting in
practice, but only provide a first impression of whether and
how such mechanisms are put in place. Additionally, we
simulated a rather weak attacker, in that we performed un-
targeted guessing by trying the top 25 passwords compliant
with the services’ policies. We have performed our guesses
using the Tor network, however, it is not known how re-
alistic it is for an attacker to use Tor. However, realistic
adversaries would presumably act more sophisticated, e. g.,
exploiting password reuse, or spoofing the account owner’s
location by using an IP from a specific area or browser con-
figuration. Furthermore, we only focused on the primary
authentication interface. However, there are also reports
of attacks exploiting a missing rate-limiting for the fallback
authentication mechanism and API endpoints.

5. CONCLUSION
In this work, we explored practical implementations of rate-
limiting in online services. Our results indicate that providers
are aware of their responsibility to contribute to account se-
curity, instead of just forcing their users to set and remember
strong passwords. There are differences in how providers ap-
ply rate-limiting. In total we have identified three levels of
protection. First, large services combine mechanisms such
as fingerprinting, captchas, blocking, multiple authentica-
tion steps, and notifications. Smaller websites lock down ac-
counts and require manual account recovery involving their
users and help desks. It is arguable whether involving users
is an acceptable solution in the trade-off between security
and usability (after an attack has been detected). However,
leaving account protection solely to users by burdening them
to use strong passwords is not recommendable.
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